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A new implementation of boundary condition based on the half-covolume and
bounce-back rule for the non-equilibrium distribution function for the finite
volume LBM is proposed here. The numerical simulation results for the expan-
sion channel flow and driven cavity problem indicate that this method is work-
able for arbitrary meshes. In addition, the fourth order Runge–Kutta scheme is
found to be a practical way in the LBM to accelerate the calculation speed.
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1. INTRODUCTION

In recent years, the LBM has been developed into an alternative useful tool
to solve complex fluid flows. Although it has notable advantages over the
conventional methods, there are still some limitations in the implementa-
tion of LBM models. One of these is that the LBM scheme on a Cartesian-
like grid is restricted to a special class of uniform and regular spatial lattices.
Some workers have attempted to extend the applicability to the irregular
lattices. Succi (1, 2) was the first to propose a finite-volume formulation of the
LBM. However, the empirical formulae used are quite complicated even
for the simple rectangular meshes, and a free parameter has to be intro-
duced and adjusted in order to minimize the numerical diffusion. To
improve it, Chen (3) developed another finite-volume scheme. With properly
chosen forms of the state-flux functions, both exact conservation laws and
equilibrium balance conditions are achieved as in the original LBM. In the



new method proposed by He, Luo and Dembo, (4) an interpolation step is
introduced after stream and collision steps to determine the density distri-
butions at the grid points for the next time step. Filippova and Hanel (5)

presented the multiscale LBM scheme with the boundary-fitting formula-
tion on the curvilinear boundaries. It uses the concept of hierarchical grid
refinement. The calculation is based on a coarse grid covering the whole
integration domain. In a critical region, a finer grid is superposed to the
basic grid. The calculation proceeds with large time-step according to
the coarse grid; while on the finer grids, several time steps according to the
refinement ratio are performed to advance to the same time level. This
feature is very important for the computations of time-dependent flows.
For the computation of steady-state incompressible flows, the use of
several smaller time-steps on the fine grid will increase the computational
time. In order to remove this drawback, the use of smaller amount of time
steps on the fine grid is proposed. For the time-dependent computation,
this is connected with the change of ‘‘molecular’’ speeds (6) on the fine grid
so that the temporal accuracy will not be impaired in certain limits. For
steady-state computation, the saving of CPU time can be even larger, since
the same amount of time steps can be chosen on coarse and fine grids as
well. Recently, a new method is proposed by Xi, (7–10) which can be used on
irregular meshes with arbitrary connectivity. It is based on modern finite-
volume methods (11) and keeps the simplicity of the conventional LBM.
The main focus associated with this new scheme is the implementation

of the boundary conditions. The half-covolume technique is introduced and
used by Peng and Xi (12) at the solid boundary. This method is quite general
and simple in the sense that it does not assume the fluid properties and the
orientations of the boundary walls. It is very robust when the inlet and
outlet boundaries are periodical. However, it will cause some problems
when it is used in other flow problems such as the velocity profile being
given at the inlet. In order to solve this problem, a new implementation of
boundary condition based on the half-covolume and bounce-back rule for
the non-equilibrium distribution function for the finite volume LBM is
proposed here. Besides, this problem is more severe at the corner points. In
driven cavity problem, the left bottom small vortex cannot be obtained
when no special treatment is used at the corner points. So some additional
treatments are used at the corner nodes. As will be shown in Section 3.2,
the physical background of bounce back rule is the compliance of Grad’s
thirteen-moments. (13) When the compliance of Grad’s thirteen-moments or
the bounce back rule is broken, the no-slip boundary condition on the solid
wall may not be guaranteed. Considering the fact that both the complete
bounce back scheme (14) and half-covolume technique do not distinguish
among distribution functions, the combination of the half-covolume and
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the bounce back scheme are very easy to implement in a computer code.
The proposed approach is validated by its application to solve the 2D
expansion channel flow and the driven cavity flow.

2. THE FINITE-VOLUME LBM MODEL

The finite-volume approach starts with the lattice Boltzmann equation
in differential form, which reads:

“fi
“t
+vi • Nfi=Wi+avi • F (1)

where

Wi=−
1
y
[fi(x, vi, t)−f

eq
i (x, vi, t)]

feqi =wir 51+
3vi • u
c2
+
9(vi • u)2

2c2
−
3u2

2c2
6

vi=˛
0 i=0

(cos[(i−1) p/2], sin[(i−1) p/2]) c i=1–4
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w0=4/9, wi=1/9 for i=1–4 and wi=1/36 for i=5–8
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i
v2ix=1;C
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Figure 1 shows a finite element surrounding an interior node P. Here P, P1
to P8 are the grid points. A to H represent the edges of the control volume
over which integration of the PDE is performed. A, C, E, and G are the
midpoints of the edge PP1, PP3, PP5 and PP7 respectively. B, D, F, and H
are the geometric center of element PP1P2P3, PP3P4P5, PP5P6P7 and
PP7P8P1 respectively.
The cell-vertex type is used here. In this type of formulation, all the

density distribution functions at the grid nodes are known while the distri-
bution functions at other locations are interpolated from the known values
at the grid points using standard interpolation technique.
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Fig. 1. Diagram of a finite element surrounding an interior node P.

The integration of the first term in Eq. (1) is approximated as

F
PABC

“fi
“t
ds=

“fi(P)
“t

sPABC (2)

where sPABC is the area of PABC and fi(P) is the fi value at grid point P.
In what follows, the grid-node index is given in parentheses following the
fi values. In the above equation, an approximation that fi is constant over
the area PABC is used to prevent solving a set of equations.
The integration of the second term of Eq. (1) will give fluxes through

the four edges PA, AB, BC, and CP. Since the summation over all the
polygons like PABC, PCDE, PEFG, and PGHA will be done, the net flux
through internal edges (PA, PC, PE, PG) will cancel out. Therefore, the
explicit expression for the internal edges will be omitted. That is

F
PABC
vi • Nfi ds=vi • F

AB
fi dl+vi • F

BC
fi dl+Is (3)

where Is represents fluxes through internal edges. With the standard
assumption of bilinearity of fi in quadrilateral elements, the flux is then
given by

F
PABC
vi • Nfi ds=vi • nABlAB[fi(A)+fi(B)]/2

=vi • nBClBC[fi(B)+fi(C)]/2+Is (4)

where nAB and nBC are the unit vectors normal to the edge AB and BC,
respectively, and lAB and lBC are the lengths of AB and BC, respectively.
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With the assumption of bi-linearity of fi and f
eq
i over the quadrila-

teral elements, the integration over the collision term of Eq. (1) results in
the following formula:

−F
PABC

1
y
(fi−f

eq
i ) ds=−

sPABC
y
[Dfi(P)+Dfi(A)+Dfi(B)+Dfi(C)]/4

(5)

where

Dfi(P)=fi(P)−f
eq
i (P)

Dfi(A)=fi(A)−f
eq
i (A)

Dfi(B)=fi(B)−f
eq
i (B)

Dfi(C)=fi(C)−f
eq
i (C)

Here fi(A), fi(B), fi(C) and their corresponding equilibrium particle dis-
tribution functions feqi (A), f

eq
i (B), f

eq
i (C) are the values at non-grid nodes

A, B, and C, respectively. This may be obtained by interpolation from the
four grid nodes at element PP1P2P3,

fi(A)=[fi(P)+fi(P1)]/2

fi(B)=[fi(P)+fi(P1)+fi(P2)+fi(P3)]/4

fi(C)=[fi(P)+fi(P3)]/2

feqi (A)=[f
eq
i (P)+f

eq
i (P1)]/2

feqi (B)=[f
eq
i (P)+f

eq
i (P1)+f

eq
i (P2)+f

eq
i (P3)]/4

feqi (C)=[f
eq
i (P)+f

eq
i (P3)]/2

With these results, the integration of Eq. (1) over the polygon PABC is
complete. The integration over the whole control volume ABCDEFGH is
just the sum of contributions from all these terms over different polygons
PABC, PCDE, PEFG, and PGHA. Therefore, fi at grid node P is updated
as follows:

fi(P, t+Dt)=fi(P, t)+
Dt
sP
1 C
around P

(collisions)− C
around P

(fluxes)2+avi • F
(6)

where sP is the total area of the control volume around grid node P, and
‘‘collisions’’ and ‘‘fluxes’’ refer, respectively, to the finite-volume-integrated
contributions from the collision term and fluxes.
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3. IMPLEMENTATION OF BOUNDARY CONDITIONS

3.1. Half-Covolume Scheme

Let P, P5, and P1 are boundary nodes separating the fluid (upper half)
from the lower half. As for the interior fluid nodes, the value of fi at P is
updated through Eq. (6) by covolume integrals. At the boundary, the
covolume is not complete in the 2p direction as the polygons PEFG and
PGHA are not included. This leads to the difference when integrating the
second term of Eq. (1) over polygons PABC and PCDE. The flux terms
over the edges PA and EP, which are omitted in the case of interior nodes,
must be included in the calculation. They are actually easy to evaluate by
Eq. (4). The velocity of the boundary wall is used when feqi for the bound-
ary nodes are calculated in order to enforce the no-slip boundary condi-
tion. This is an effective way to implement the boundary condition for the
fluid problems where the inlet and outlet are periodic conditions. This can
be verified by the following cases.

(1) Two-dimensional Poiseuille flow between two parallel plates.

The external force is F=2.604×10 −5ex. The total 64×32 mesh points
are used. The analytical solution for the case is ux(y)=FL2/(8ru) N1−(2y/
L−1)2M, where L is the channel width. Figure 2 shows the numerical results
with the analytical solution. It can be seen that the agreement is excellent.

(2) Two-dimensional rotating Couette flow between two concentric
cylinders.
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Fig. 2. Numerical velocity profile for the Poiseuille flow as compared with analytic solution.
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Fig. 3. Numerical velocity profile for rotating Couette flow as comparedwith analytic solution.

The outer cylinder rotates with velocity Veh, while the inner cylinder is
stationary. In this simulation, the radii of the two cylinders are R1=30 and
R2=60, the velocity V=0.01. The 180×30 mesh points are used. The
analytical solution for the problem is uh(r)=(V2R2r−

V2R
2
1R2
r )/(R

2
2−R

2
1).

Figure 3 shows the numerical result of the steady velocity profile and the
corresponding analytical solution. One can see from Fig. 3 that the agree-
ment is also excellent.

(3) Plane Couette flow with a half-cylinder of radius R resting on the
bottom plane.

The meshes are generated using elliptic grid generation method as
shown in Fig. 4. In this simulation, R=20 is for the radius of cylinder,

Fig. 4. Meshes used for flow past a half-cylinder resting on a plane.
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Fig. 5. Velocity field u in the center (x=0) of the channel for flow past a half-cylinder
resting on a plane.

U=0.1 is for the top plane speed, and the plane is 9.5R×6R. The mesh
size used is 100×60. Figure 5 shows the velocity profile across y in the
center of the channel. Good agreement between present results and those
given by Xi (8) was found.

3.2. Half-Covolume plus Bounce Back Method

It was found from the above section that half covolume method is very
effective in solving flow problems where the inlet and outlet are periodical.
However, it would cause some problems when it is used in other cases such
as the velocity profile being given at the inlet. The reason for this may lie in
the inconsistency with Grad’s 13 moments expansion, which is needed to be
satisfied for a robust and efficient boundary condition.
According to Grad’s ‘‘13-moment’’ system, the non-equilibrium density

distribution function can be written as

fneq=feq 1P : (vi−u)(vi−u)
2pRT

−
S· (vi−u)
2pRT
11− (vi−u)2

(D+2) RT
22 (7)

where P and S are the stress tensor and heat flux vector, respectively. The
terms involving O(u) and higher order can be neglected since the non-equi-
librium distribution itself is very small, which leads to

fneq=feq 1P : vivi
2(RT)2

−
S·vi
2(RT)2
11− v2i

(D+2) RT
22 (8)

546 Chew et al.



 

7 

1

5

8 

2 6 

3 

4 

Fig. 6. Schematic plot of velocity directions of the 2-D model at the bottom wall.

For the isothermal flow, the heat transfer term can be neglected, and then
it can be approximated by

fneq=feq
P : vivi
2(RT)2

(9)

So

fneq, isoa =fneq, isob (10)

where a and b have the opposite direction.
On the solid wall, Eq. (10) is actually the bounce back condition. This

implies that the physical background of bounce back rule is the compliance
of Grad’s thirteen-moments. In the following applications, we combine the
half-covolume and the bounce back rule for the non-equilibrium distribu-
tion to implement the boundary condition. As an example, we consider the
case of the bottom wall. The nine-bit model is shown in Fig. 6. For the
bottom wall, the distribution at direction 7, 4, and 8 are determined by half-
covolume, and the distribution at direction 5, 2, and 6 are determined by
the bounce back rule for the non-equilibrium distribution through Eq. (10).
To test the validity of this new implementation of the boundary con-

dition, the numerical simulations for the expansion channel flow are
carried out. This problem has been chosen by a workshop of International
Association for Hydraulic Research (IAHR) working group (Napolitano
et al., 1985) (15) as a suitable test case for assessing the capabilities of the
current numerical methods on refined modeling of the flows on the subject
of computing laminar flows in complex geometry. The total length of the
channel is chosen to be Re/3. The lower boundary (solid wall) of the
channel is given by the following expression:

yl(x)=
1
2
5tanh 12−30 ·x

Re
2− tanh(2)6 (11)
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At the inlet, the velocity profile is given as

˛u=1.5×(2y−y
2)

v=0
for x=0, 0 [ y [ 1 (12)

The velocity boundary condition produced by Zou and He (14) is used here
at the inlet.
The mesh size used for this simulation is 71×31. Figures 7 and 8 show

the wall vorticity distribution for Re=10 and Re=100. The present results
compare well with the benchmark solution of IAHR workshop (Napolitano
et al., 1985) given by Cliffe et al. using a finite element method with results
being grid-independent. Figure 9 displays the wall vorticity distribution for
different Reynolds numbers calculated by the present method. It is con-
firmed in this figure that as Reynolds number increases to the value of
much larger than 1, the solution takes on a quasi-self-similar form, i.e., the
wall vorticity becomes independent of Re when plotted vs. x/xout. Figure 10
shows the streamlines for Re=10. The separation region is shown clearly in
this figure.
The above numerical results show that the new boundary method is

valid for solving the flow problem with complex geometry of boundaries.

3.3. Special Treatment on the Corner Points

For some flow problems, which have the corner points such as driven
cavity problem, the implementation of the boundary condition at the
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Fig. 7. Wall vorticity distribution for expansion channel flow at Re=10.
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Fig. 8. Wall vorticity distribution for expansion channel flow at Re=100.
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Fig. 10. Streamline for expansion channel flow at Re=10.
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corner points is very important. At the corner points, the velocity direc-
tions of the 2-D model are show in Fig. 11. For the direction 6 and direc-
tion 8, the values for these two directions have little influence on the results
of the numerical simulation using the original LBM, because they do not
contribute any information into the interior parts. But for finite volume
LBM, these values will be used when calculating the interior points at these
two directions. So it is very crucial for the choice of the values at these two
directions. Take the case of driven cavity problem as an example. At
Re=100, the values of the equilibrium function were given for the distri-
bution functions at these two directions at the beginning. The primary and
the right bottom vortices can be captured correctly and the left bottom
small vortex cannot be obtained. This means that the equilibrium boundary
condition does not have enough accuracy for the complex flow pattern.
The left bottom small vortex is plagued by the numerical errors. In order to
increase the accuracy, the first order extrapolation scheme at these two
directions was tried. At these two directions, the values are obtained by
extrapolation from the two interior points, and for other directions, the
half-covolume combined with the bounce back method are used. The
numerical results of this treatment are very accurate. The results for
Re=100 are shown in Figs. 12–15. The mesh size used for these results is
101×101.
According to the present study, for Re=100, the center of the primary

vortex is at x=0.617, y=0.737, the center of the left corner vortex is at
x=0.030, y=0.037, and the center of the right corner vortex is at x=
0.0945, y=0.060. The results are in good agreement with those by Ghia
et al. (16) ( for Re=100 by Ghia et al., x=0.6172, y=0.7344 for the primary
vortex, x=0.0313, y=0.0391 for the left corner vortex, and x=0.9453,
y=0.0625 for the right corner vortex.).

 

7 

1 

5

8 

2 6 

3 

4 

x 

y 

Fig. 11. Schematic plot of velocity directions of 2-D model at the left-bottom conner point.

550 Chew et al.



Fig. 12. Streamlines for driven cavity flow at Re=100.
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Fig. 13. Vorticity contours for driven cavity flow at Re=100.
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Fig. 14. Comparison of u-velocity profiles along the vertical centerline of driven cavity at
Re=100.
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Fig. 15. Comparison of v-velocity profiles along the horizontal centerline of driven cavity at
Re=100.

To further validate the present method, numerical computations were
performed for Re=400 and Re=1000, and the results are shown in
Figs. 16–19. The mesh sizes used for Re=400 and Re=1000 are respec-
tively 201×201 and 251×251. Clearly, a much larger number of mesh
points is needed for Re=400 and 1000 in order to obtain accurate numeri-
cal results. This may be one of the shortcomings of the finite volume LBM
for simulation of flows with high Reynolds number. In this paper, we aim
to improve the implementation of boundary conditions rather than the
finite volume LBM itself. Our numerical results for the driven cavity
problem showed that the special treatment on the corner points is needed
and effective.
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Fig. 16. Comparison of u-velocity profiles along the vertical centerline of driven cavity at
Re=400.
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Fig. 17. Comparison of v-velocity profiles along the horizontal centerline of driven cavity at
Re=400.
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Fig. 18. Comparison of u-velocity profiles along the vertical centerline of driven cavity at
Re=1000.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1 1.2

x

v
-v
e
lo
c
it
y

present

result of

Ghia

Fig. 19. Comparison of v-velocity profiles along the horizontal centerline of driven cavity at
Re=1000.
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3.4. The Fourth Order Runge–Kutta Scheme

In order to accelerate the calculation speed, the fourth order Runge–
Kutta scheme is used in this work. The general mth order Runge–Kutta
scheme can be written as

f (0)=f (n) (13a)

f (k)=f (0)+ak Df (k−1), k=1,..., m (13b)

f (n+1)=f (m) (13c)

where

Df (k−1)=
Dt
sP
1 C
around P

collisions(f(k−1))− C
around P

fluxes(f (k−1))2

When m is taken as 4, we can get the fourth order Runge–Kutta scheme, in
which the coefficients are taken as

a1=0.0833, a2=0.2069, a3=0.4265, a4=1

To test the efficiency of the Runge–Kutta scheme, we performed
numerical integration in the time direction by two schemes: Euler explicit
scheme and the fourth order Runge–Kutta scheme. Two cases were studied.
The first case is the expansion channel flow. The Reynolds number is taken as
10 and the mesh size is 71×31. The convergence criterion is set to

C
i, j
|`(u2i, j+v

2
i, j)

n+1−`(u2i, j+v
2
i, j)

n|;C
i, j
|`(u2i, j+v

2
i, j)

n| [ 10−6 (14)

where n is the time level. It was found that the time step for the fourth
order Runge–Kutta scheme can be taken as 6.5 times greater than that for
the Euler explicit scheme. The second case is the driven cavity flow. The
Reynolds number is taken as 100 and the mesh size is chosen as 101×101.
The convergence criterion is set the same as in the first case. For this case,
the time step of the fourth order Runge–Kutta scheme can be 5 times larger
than that of the Euler explicit scheme. For both cases, the overall CPU
time required by the fourth order Runge–Kutta scheme on Compaq ES40
workstation is less than that by the Euler explicit scheme. But the Euler
explicit scheme requires less virtual storage as compared to the fourth order
Runge–Kutta scheme. The CPU time (s) and the memory required by Euler
explicit scheme and the fourth order Runge–Kutta scheme for simulation
of expansion channel flow and the lid driven cavity flow are shown in
Table I.
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Table I. Comparison of CPU Time and Memory Between Euler Explicit Scheme and

Fourth Order Runge–Kutta Scheme

Euler explicit 4th order Runge–Kutta

CPU time Memory CPU time Memory
Problem Mesh size (seconds) (MB) (seconds) (MB)

Expansion channel flow 71×31 485.10 11 336.25 12
Driven cavity flow 101×101 1658.51 15 1219.42 19

4. CONCLUSION

A new implementation of boundary conditions for the finite volume
LBM has been developed in this paper. It is based on the half-covolume
and the bounce-back rule for the non-equilibrium distribution function.
For the test problems of expansion channel flow and driven cavity flow,
good results can be obtained using this new approach.
The fourth order Runge–Kutta integration is found to be a practical

way in the LBM to enlarge the time step, so that the convergence rate can
be speeded up.
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